AGROLAB Austria GmbH

Meggenhofen, 20.05.2022

BERICHT

über die Durchführung von Emissionsmessungen

gemäß ÖNORM EN 15259

Emissionsmessungen an vier Untersuchungsgegenstand: Gasfeuerungen gemäß

Feuerungsanlagenverordnung

Firma

Wiesner-Hager Möbel GmbH

Linzer Straße 22 4950 Altheim

Auftragsdatum: 14. März 2022

Bestellnummer: Bestellung durch Herrn Ametsreiter

Tag der Messung: 21. März 2022 & 13. April 2022

12 Seiten Bericht Berichtsumfang: 4 Seiten Anhang

AGROLAB Austria GmbH Prüfstelle:

Trappenhof Nord 3 4714 Meggenhofen

Auftrags-Nr.: 541410/22

Landgericht Wels FN: 207 355 i Ust/VAT-ID-Nr.: AT U 519 84 303

Auftraggeber:

Geschäftsführer Dr. Paul Wimmer Manfred Gattringer Dr. Carlo C. Peich

INHALT

1.	FORMULIERUNG DER MESSAUFGABE	3
2.	BESCHREIBUNG DER ANLAGE, GEHANDHABTE STOFFE	4
3.	BESCHREIBUNG DER PROBENAHMESTELLE	5
4.	MESS- UND ANALYSENVERFAHREN, GERÄTE	6
5.	BETRIEBSZUSTAND DER ANLAGE WÄHREND DER MESSUNG	8
6.	ZUSAMMENSTELLUNG UND DISKUSSION DER ERGEBNISSE	8

1. FORMULIERUNG DER MESSAUFGABE

1.1. Auftraggeber

Wiesner-Hager Möbel GmbH

1.2. Betreiber

Wiesner-Hager Möbel GmbH

1.3. Standort der Anlage

Linzer Str. 22 4950 Altheim

1.4. Anlage

4 Gasfeuerungen

Halle 23 - Fertigung

Halle 10 - Pulverbeschichtung

1.300 kW Viessmann Gasfeuerung 560 kW Viessmann Gasfeuerung

1.600 kW Viessmann Gasfeuerung 1.100 kW Viessmann Gasfeuerung

1.5. Datum der Messung

Aktuelle Messung

21. März & 23. April 2022

Letzte Messung 2019 Nächste Messung 2025

Der genaue Zeitraum der jeweiligen Messung ist in der Zusammenfassung der Messergebnisse zu finden.

1.6. Anlass der Messung

Emissionsmessung gemäß Feuerungsanlagen-Verordnung - FAV

1.7. Aufgabenstellung

Durch Emissionsmessungen soll festgestellt werden, ob die in der Feuerungsanlagen-Verordnung 2019 – FAV 2019 Anlage 1 Teil 1 festgelegten Grenzwerte bezogen auf 3% Restsauerstoffgehalt bei den gegenständlichen Gasfeuerungsanlagen eingehalten werden.

	Grenzwert mg / m³	Anzahl Messwerte	Angewandte Verfahren	Verfahren im Akkreditierungsumfang
Kontinuierliche Parameter				
Sauerstoff		6	ÖNORM EN 14789:2017	Enthalten
Stickoxide	120	6	ÖNORM EN 14792:2017	Enthalten
Kohlenmonoxid	80	6	ÖNORM EN 15058:2017	Enthalten
Abgasbedingungen	,	,	EN ISO 16911-1:2013	Nicht Enthalten

(Strömungsgeschwindigkeit, Statischer Druck im Abgaskamin, Luftdruck in Höhe der Probenahmestelle, Abgastemperatur, Abgasfeuchte, Abgasdichte)

1.8. Messplanabstimmung

Die Messplanabstimmung erfolgte hinsichtlich Messtermin, dem Messumfang und der Vorgehensweise mit Herrn Amtesreiter, Fa. Wiesner Hager Möbel GmbH.

1.9. Vor Ort beteiligte Personen

Kilian Taxacher, Emissionsmesstechniker Fa. Agrolab Austria GmbH

1.10. Weitere beteiligte Institute

1.11. Fachlich Verantwortlicher der Prüfstelle

Manfred Gattringer, Geschäftsführer Fa. Agrolab Austria GmbH, 07274 / 2100 00

2. BESCHREIBUNG DER ANLAGE, GEHANDHABTE STOFFE

2.1. Art und Zweck der Anlage

Es handelt sich um zwei Feuerungsanlagen für gasförmige Brennstoffe zur Erzeugung von Prozess- und Raumwärme.

Als Brennstoff wird Erdgas H verwendet.

2.2. Beschreibung der Anlage

Nennwärmeleistung: 1.600 kW 1.100 kW 1.300 kW 560 kW Hersteller: Viessmann Viessmann Viessmann Viessmann Bezeichnung: Vitoplex 200 Vitoplex 200 Vitoplex 200 Vitoplex 200 Seriennummer: 7438487 801023 7438489 801022 7438488 901006 7452980 901035 106 103 105 104 Typ: SX2A SX2A SX2A SX2A Baujahr: 2018 2018 2019 2019 Brennstoff: Erdgas H Erdgas H Erdgas H Erdgas H Brenner: ELCO VG 6.1600 M ELCO VG 6.2100 M **ELCO VG 6.2100 ELCO** M/TC /2019

2.3. Typische Betriebsweise nach Betreiberangabe

Die Kessel werden je nach Bedarf an Prozesswärme einander zugeschaltet, um stets eine optimale Auslastung der einzelnen Gasfeuerungen zu erreichen.

2.4. Einrichtung zur Erfassung der Emission

Die Emissionen werden durch das Abgasrohr gefasst und ausschließlich durch den Kaminzug über Dach ins Freie geführt.

2.5. Einrichtung zur Verminderung der Emissionen

Keine.

2.6. Beschreibung der Emissionsquelle

Höhe über Grund> 10 mAustrittsfläche0,0962 m²BauausführungStahlblech isoliert

3. BESCHREIBUNG DER PROBENAHMESTELLE

- ✓ ... Anforderung oder Empfehlung der ÖNORM EN 15259 erfüllt
- X... Anforderung oder Empfehlung der ÖNORM EN 15259 nicht erfüllt

	Kriterium	Anforderung & Empfehlungen gemäß ÖNORM EN 15259	1.3 MW & 0,56MW Feuerungen	1.6MW & 1.1MW Feuerungen
rschnitts	Abluftführung	Vertikal für Partikelförmige Stoffe	horizontal	horizontal
Lage des Messquerschnitts	Gerade Einlaufstrecke	$\frac{\text{Einlaufstrecke}}{Hydr. \emptyset \ d_h} \ge 5$	< 5 X	< 5 X
Lage de	Gerade Auslaufstrecke	$\frac{\text{Auslaufstrecke}}{\text{Hydr.} \emptyset \ d_h} \ge 2$	> 2 •/	> 2
des	Durchmesser [mm]		350	450
Abmessungen des Messquerschnitts	Fläche [m²]		0,096	0,159
Abrr	Hydraulischer Durchmesser d _h [m]		0,35	0,45
-	Lage der Messstrecke für repräsentative Messungen	Kanalabschnitt mit konstanter Form und Querschnittsfläche	/	1
essplatzes	Strömungsverhältnisse	Keine lokale negative Strömung	√	√
Abschließende Beurteilung des Messplatzes	Verhältnis der höchsten/niedrigsten örtlichen Geschwindigkeit im Messquerschnitt	<3:1	1	1
ende Beurt	Mindestanzahl der Messachsen bzw. Messöffnungen	1 Seitenunterteilungen	1	1
Abschließ	Ausreichende Dimension der Messöffnungen	> 20 mm, Gasdicht verschließbar	25 mm	25 mm
	Messpunkte	1	1	1

Die wesentlichen Anforderungen für den Erhalt repräsentativer Messergebnisse werden erfüllt.

4. MESS- UND ANALYSENVERFAHREN, GERÄTE

4.1. Abgasrandbedingungen

4.1.1. Strömungsgeschwindigkeit

elektronisches Mikromanometer Differenzdruckmessgerät Typ Testo 512 Fabrikat: Fa. Testoterm Ges.m.b.H.

Prandtl Staurohr

4.1.2. Statischer Druck im Abgaskamin

elektronisches Mikromanometer Differenzdruckmessgerät Typ Testo 512 Fabrikat: Fa. Testoterm Ges.m.b.H.

Prandtl Staurohr

4.1.3. Luftdruck in Höhe der Probenahmestelle

Barometer Typ Testo 511 Fa. Testoterm Ges.m.b.H.

4.1.4. Abgastemperatur

Ni-Cr-Ni-Thermoelement, Sekunden Thermometer Testo 925, Fa. Testoterm Ges.m.b.H.

4.1.5. Abgasfeuchte

Absorption an Absorptionsröhrchen für H₂O (Molekularsieb 0,3 mm mit Indikator) Fa. Merck Art.Nr.: 6107 und nachfolgende gravimetrische Bestimmung

4.1.6. Abgasdichte

Berechnet unter Berücksichtigung der Abgasanteile an: Sauerstoff (O₂) Kohlendioxid (CO₂) Luftstickstoff (mit 0,933 % Ar) Kohlenmonoxid (CO) Abgasfeuchte (Wasserdampfanteil im Abgas) sowie der Abgastemperatur und Druckverhältnisse im Kanal 4.2. Gas- und dampfförmige Emissionen

4.2.1. Kontinuierliche Messverfahren

4.2.1.1. Messobjekt

> Sauerstoff Kohlendioxid Kohlenmonoxid Stickstoffoxide

Messverfahren, Grundlage des Verfahrens 4.2.1.1.1.

> Paramagnetismus Sauerstoff:

ÖNORM EN 14789: 2017

Kohlenmonoxid nichtdispersive Infrarotmesstechnik

ÖNORM EN 15058: 2017

Kohlendioxid nichtdispersive Infrarotmesstechnik

ÖNORM EN 15058:2017 Chemilumineszenz

ÖNORM EN 14792:2017

4.2.1.1.2. Messgerät

Portable Gas Analyzer, Horiba PG250

4.2.1.1.3. **Eingestellter Messbereich**

Stickstoffoxide

0 - 25 Vol.% Sauerstoff Kohlendioxid 0 - 25 Vol.% Kohlenmonoxid 0 - 250 ppmStickstoffoxide 0 - 250 ppm

Verfahrenskenngrößen des Messsystems 4.2.1.1.4.

Grätetyp; eignungsgeprüft

Messplatzaufbau 4.2.1.1.5.

> Entnahmesonde: Staubfilter:

Probegasleitung vor Aufbereitung:

Probegasleitung nach Gasaufbereitung: Werkstoffe der ausführenden Teile:

Messgasaufbereitung:

Temperatur:

0,25 m Länge Teflon

Fabrikat/Typ: Fa. M&C PSS-10/1

Nullgas:

80 Vol.% N2

20 Vol. % O2

Typ: PSP-4000-H/C/T Fa. M&C Keramikfilterelement Typ SP-2K

beheizt 180 °C, 10 m Länge

geregelt auf 5 °C

4.2.1.1.6. **Eingesetzte Gase**

> Prüfgas: Zusammensetzung:

12Vol% CO2 200 ppm CO

200 ppm NO 200 ppm Propan

100 ppm SO2 Hersteller: Fa SIAD Herstelldatum:

Zertifiziert: Stabilität bis 16.03.2021 Ja (Zert. Nr 7628)

16.03.2023

Fa. Linde 2020 Nein

4.2.1.1.7. Registrierung der Messwerte

Kontinuierlich mit Rechner

Тур

Erfassungsprogramm:

SMA 371

Elektronische Datenerfassung EDA

5. BETRIEBSZUSTAND DER ANLAGE WÄHREND DER MESSUNG

5.1. Feuerungsanlagen

Aufgrund der relativ hohen Außentemeraturen und mäßiger Prozesswärmebedarf konnten die Feuerungen wenn überhaupt nur kurz im Nennlastbereich (90-100% der Nennleistung) betrieben werden.

Die Feuerungen befanden sich in einem repräsentativen Betriebszustand.

6. ZUSAMMENSTELLUNG UND DISKUSSION DER ERGEBNISSE

6.1. Zusammenstellung der Messergebnisse

In den nachstehenden Tabellen sind die ermittelten Ergebnisse unter folgenden Bedingungen angegeben:

- als Halbstundenmittelwerte
- 0°C
- 1013 hPa
- Trockenes Abgas
- 3 % Restsauerstoff

Tabelle 1	Abgasrandbedingungen
Tabelle 2.1	Messergebnisse 1.300 kW
Tabelle 2.2	Messergebnisse 560 kW
Tabelle 2.3	Messergebnisse 1.600 kW
Tabelle 2.4	Messergebnisse 1.100 kW

Seite 9 von 12

Tabelle 1: Abgasrandbedingungen

		1.300 kW	560 kW	1.600 kW	1.100 kW
Messtag	ı	21.03.2022	21.03.2022	13.04.2022	13.04.2022
Messzeitraum	Uhrzeit	10:56 – 12:21	13:38 – 14:24	10:48 – 12:37	12:44 – 14:01
Messquerschnitt	m²	0,096	960'0	0,159	0,159
Luftdruck	hPa	686	686	974	974
durchschnittliche statische Druckdifferenz	Ра	-33	-36	-35	-39
Durchschnittliche Abgastemperatur	٥.	118	115	95	109
Durchschnittliche Abgasfeuchte	g H ₂ O / Nm³	44	49	46	44
durchschnittliche Abgasgeschwindigkeit	s/ш	5,1	3,8	4,0	3,6
Volumenstrom Betriebszustand	Bm³/h	1.760	1.330	2.270	2.090
Volumenstrom Normzustand, feucht	Nm³ _f / h	1.200	1.300	1.620	1.430
Volumenstrom Normzustand, trocken	Nm³ _{tr} / h	1.140	1.220	1.530	1.360
Volumenstrom NZ, trocken, bei 3% O ₂ -Gehalt	Nm³ _{tr,O2} / h	1.150	1.230	1.540	1.370
Gesamtfehler der emissionstechnischen Daten	%	> 5			\ 57

Tabelle 2.1 Messergebnisse 1.300 kW

THE REAL PROPERTY AND ADMINISTRATION OF THE PERTY AND ADMINISTRATION OF THE PERTY ADMINISTRATI			1.300 k	1.300 kW Gasfeuerung				
Betriebszustand			Teillast	last		Nennlast	ılast	
Messzeit	21.03.2022	10:56 – 11:00	11:06 - 11:11	11:06 - 11:11	11:43 - 11:46	12:01 - 12:04	11:18 - 12:21	Grenzwert gemäß FAV
Sauerstoff	% - Vol. O ₂	4,6	4,5	4,9	4,6	5,1	4,5	•
Kohlendioxid	% - Vol. CO ₂	9,2	9,1	8,8	8,9	8,7	8,9	1
Kohlenmonoxid	mg CO / m³	ဧ	2	2	2	လ	2	80
Stickstoffoxide	mg NO ₂ / m³	09	58	09	56	57	56	120

Tabelle 2.2 Messergebnisse 560 kW

			560 kW Gasfeuerung			
Betriebszustand		Teilllast	ast	Nennlast	last	
Messzeit	21.03.2022	13:38 - 14:08	14:08 - 14:38	14:55 - 15:24	14:47 - 14:49	Grenzwert gemäß FAV
Sauerstoff	% - Vol. O ₂	3,8	4,1	2,1	2,1	•
Kohlendioxid	% - Vol. CO ₂	2'6	9,1	10,2	10,2	-
Kohlenmonoxid	mg CO / m³	4	9	က	က	80
Stickstoffoxide	mg NO ₂ / m³	87	81	115	112	120

Auftrags-Nr.: 541410/22

Seite 11 von 12

Tabelle 2.3 Messergebnisse 1.600 kW

			1.600 k	1.600 kW Gasfeuerung				
Betriebszustand				Teillast	last			
Messzeit	13.04.2022	10:48 – 10:59	11:07 - 11:18	11:07 - 11:18	11:49 - 11:57	12:09 - 12:17	12:29 - 12:37	Grenzwert gemäß FAV
Sauerstoff	% - Vol. O ₂	4,3	4,8	5,1	5,0	5,2	5,3	1
Kohlendioxid	% - Vol. CO ₂	6,3	8,9	8,7	8,7	8,7	8,6	1
Kohlenmonoxid	mg CO / m³	<1	<1	1 >	<1	2	3	80
Stickstoffoxide	$\rm mg~NO_2$ / $\rm m^3$	55	58	58	58	57	55	120

Tabelle 2.4 Messergebnisse 1.100 kW

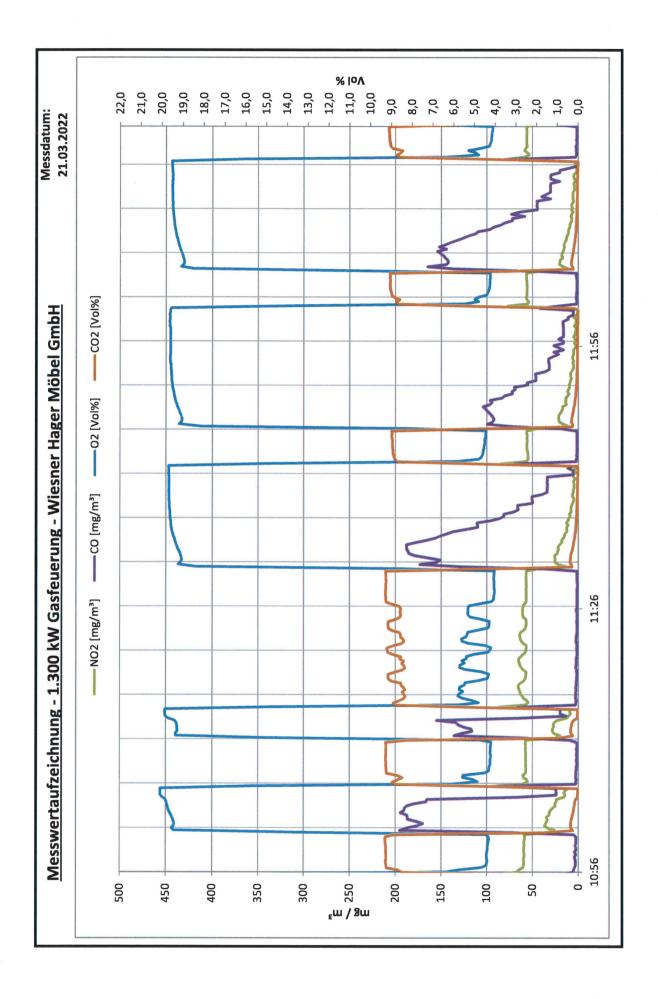
			1.1	1.100 kW Gasfeuerung	Jerung				
Betriebszustand				Teillast	last			Nennlast	
Messzeit	13.04.2022	12:44 - 12:53		13:01 - 13:06 13:13 - 13:19 13:27 - 13:33	13:27 - 13:33	13:40 - 13:47	13:55 - 14:01	14:09 - 14:15	Grenzwert gemäß FAV
Sauerstoff	% - Vol. O ₂	4,9	3,7	4,9	4,1	5,1	3,6	4,4	1
Kohlendioxid	% - Vol. CO ₂	8,8	9,4	6'8	6,3	8,7	9,5	9,1	1
Kohlenmonoxid	mg CO / m³	2	<1	-1	-	->	<:1	4	80
Stickstoffoxide	$mg NO_2 / m^3$	64	09	89	62	54	09	60	120

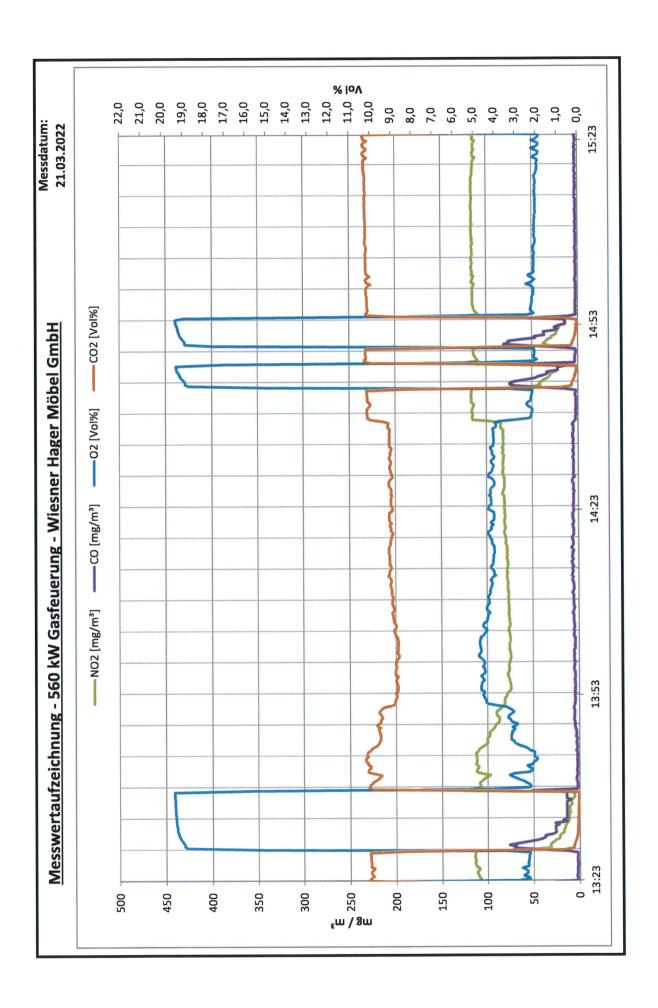
6.2. Diskussion der Messergebnisse

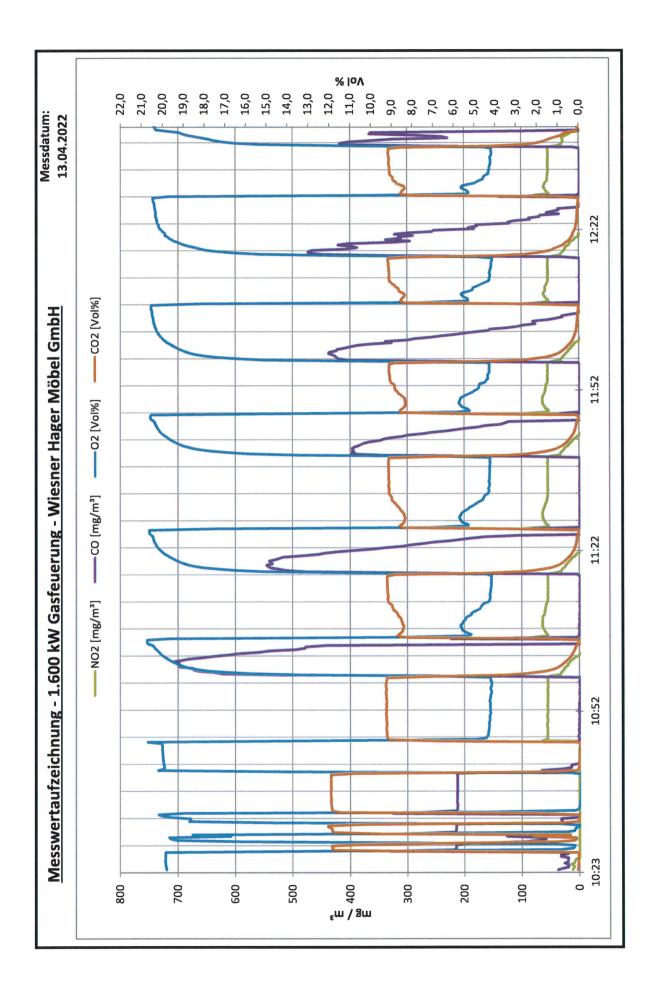
Die Wiesner-Hager Möbel GmbH, Linzer Str. 22 in 4950 Altheim beauftragte die Agrolab Austria GmbH mit Emissionsmessungen an 4 Abgasanlagen von 4 Gasfeuerungsanlagen.

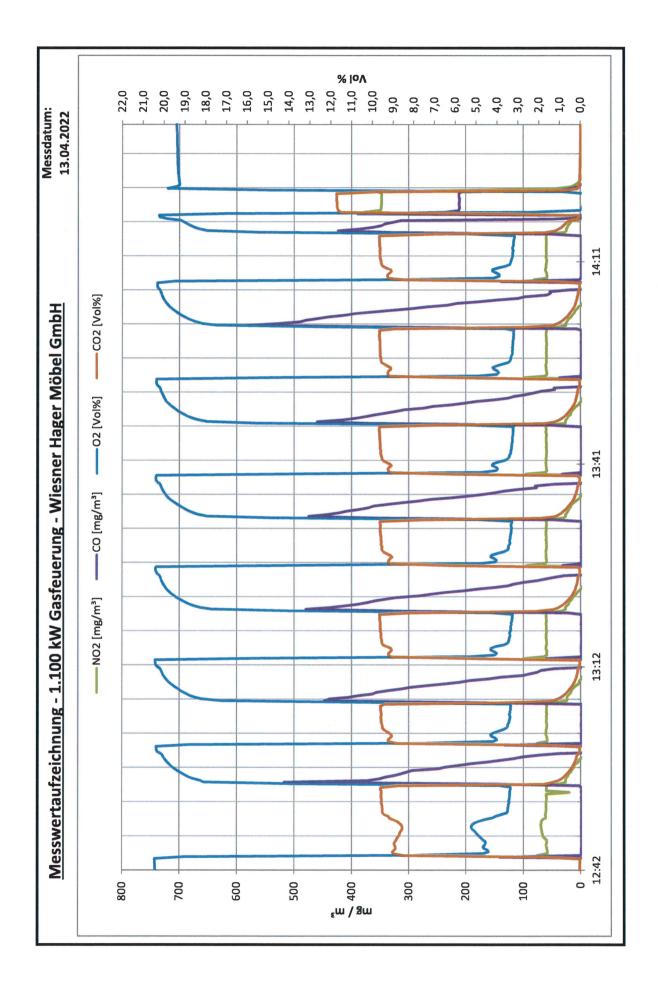
Die Messungen wurden am 21. März 2022 & 13. April 2022 durchgeführt. Die Anlagen befanden sich im Messzeitraum in einem repräsentativen Betriebszustand.

Bei Vergleich der gemessenen Emissionskonzentrationen mit den in der Feuerungsanlagenverordnung geforderten Emissionsgrenzwerten kann folgendes festgehalten werden:


Bei allen ermittelten Halbstundenmittelwerten wurden die GRENZWERTE EINGEHALTEN.


6.3. Plausibilitätsprüfung


Die gemessenen Werte sind aufgrund der Durchführung der qualitätssichernden Maßnahmen bei der Probenahme (Dichtheitsprüfungen aller Teile, Justierung mit Prüfgas) als plausibel zu betrachten.


Die Ergebnisse sind unter Berücksichtigung der Angaben des Betreibers zum Zustand der Anlage während des Messzeitraumes, und im Vergleich zu ähnlichen Anlagen plausibel.

ANHANG

